CBCS SCHEME

USN	17MR33
-----	--------

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Basic Thermodynamics

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of thermodynamic data handbook is permitted.

Module-1

- 1 a. With the suitable sketches/examples, distinguish between:
 - (i) Closed system and open system
 - (ii) Point function and path function
 - (iii) Intensive and extensive properties
 - (iv) Thermal and mechanical equilibrium

(08 Marks)

b. State the Zeroth law of thermodynamics.

(04 Marks)

c. A new scale N of temperature is deviled in which the ice point is assigned 100 N and the steam point is assigned 400 N establish the relationship between the N scale and the Celsius Scale. At what temperature will both the Celsius and the New Scale thermometer readings would be identical Newly?

(08 Marks)

OR

- 2 a. Define work, from the thermodynamic point of view. Compare heat and work. (08 Marks)
 - b. A fluid at 0.7 bar occupying 0.09 m³ is compressed reversible to a pressure of 3.5 bar according to a law PVⁿ = C the fluid is then heated reversible at constant volume until the pressure is 4 bar, the specific volume is then 0.5 m³/kg. A reversible expansion according to a law PV² = C, restores the fluid to its initial state. Sketch the cycle on a PV diagram and calculate:
 - (i) The mass of fluid present
 - (ii) The value of n in the first process
 - (iii) Net work of the cycle

(12 Marks)

Module-2

- a. Starting from the first law of thermodynamics for a closed system undergoing a non-cyclic process derive the steady state, SFEE for a control volume (open system). (08 Marks)
 - b. A small turbine runs an aircraft refrigeration system. Air enters the turbine at 4 bar and 40°C with a velocity of 40 ms⁻¹. At the exit the air is at 1 bar, 2.5°C and having a velocity of 200 m/s. If the work output of the turbine is 52 kJ/kg of air, calculate the heat transferred per kg of air.

 (06 Marks)
 - c. The properties of a certain fluid are related by u = 196 + 0.718t ad $p_v = 0.287(t + 273)$ where $u \rightarrow kJ/kg$, $t \rightarrow {}^{\circ}C$, $p \rightarrow kPa$ and $v \rightarrow m^3/kg$. Find C_p , C_v and R and γ for the fluid.

(06 Marks)

OR

- 4 a. State and prove that Kelvin Planck and Clausius statement of 2nd law of thermodynamics are equivalent. (10 Marks)
 - b. Two Carnot engines connected in series operates between the temperature of 180°C and 20°C. Calculate the intermediate temperature, engine produces: (i) equal amount of work produced (ii) same efficiency (10 Marks)

Module-3

- $\frac{\delta Q}{\delta Q}$ and write Tds relations. (12 Marks) Show that for an irreversible process $\Delta S \ge \int$ 5
 - A volume of 0.05 m³ of a perfect gas for which R = 0.297 kJ/kgK is compressed reversibly in a cylinder according to the law PVⁿ = C and then cooled at constant pressure. The initial temperature is 27°C and the final pressure is 8.5 times the initial pressure, the final volume is 0.007 m³. Determine the following:
 - The final temperature after compression
 - (ii) The final temperature
 - (iii) The net heat transfer per kg
 - (iv) The net change in specific entropy.

(08 Marks)

OR

- With a neat sketch, explain the measurement of dryness fraction by using throttling (10 Marks) calorimeter.
 - Steam at 1 MPa and 250°C enters a nozzle with a velocity of 60 m/s and leaves the nozzle at 10 kPa. Assuming the flow process to be isentropic and the mass flow rate to be 1 kg/s, (10 Marks) (ii) the exit diameter determine: (i) the exit velocity

Module-4

- (ii) Clapeyton equation Write notes on: (i) Maxwell's Relations
 - 0.5 kg of air is compressed reversibly and adiabatically from 80 kPa, 60°C to 0.4 MPa and is then expanded at constant pressure to the original volume. Sketch these processes on the PV and T-S planes. Compute the heat transfer and work transfer for the whole path.

OR ®

- (08 Marks) a. Derive an expression for change in entropy of an ideal gas.
 - A quantity of air at a pressure of 100 kPa 27°C occupying a volume of 0.5 m³ is compressed to a pressure of 500 kPa and volume of 0.12 m^3 according to the law PVⁿ = C. Find:
 - (i) The value of index 'n'
- (ii) The mass of air
- (iii) Work transfer
- (iv) Heat transferred during the process (v) Change in entropy
- (12 Marks)

Module-5

Write notes on: (i) Ideal and Real gas mixture (ii) Vander Waal's equation of state.

(12 Marks)

Compute from the Vander Waal's equation the pressure exerted by 1 kg of CO2 at 100°C if the specific volume is 3 m³/kg. Also compute the results obtained if CO₂ is treated as an ideal gas. Take $a = 362.85 \times 10^3$, R = 8314.3 and b = 0.0423. (08 Marks)

- State: (i) Dalton's law of partial pressures (ii) Amagat's law of additive volumes (10 Marks)
 - b. A gaseous mixture consists of 1 kg of oxygen and 2 kg of nitrogen at a pressure of 150 kPa and a temperature of 20°C. Determine:
 - The gas constant of the mixture (i)
 - The molecular weight of the mixture (ii)
 - Specific heats C_p and C_v of the mixture
 - The change in entropy of the mixture if the mixture is heated at constant volume to a (10 Marks) temperature of 100°C.